Small Satellites

Home » Posts tagged 'Space Weather'

Tag Archives: Space Weather

Experimental Determination of a Geometric Form Factor in a Lidar Equation

In this example we experimentally determine a geometric form factor for an in-homogeneo atmosphere by using the technique described in the article [1] Sang Whoe Dho, Young Je Park, and Hong Jin Kong,”Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere. Link to the article http://lsrl.kaist.ac.kr/homepage/Publications/Papers_Files/0043.pdf

clear all;close all; clc;

% Load Lidar observation data
load LidarD.mat                 % Load Data
R_site      = 0.418;            % [km]
dR          = 0.03;             % [km] Altitude step
n_pow       = 141;
pow         = 0;
Rmin        = 2.3;
Rmax        = 5.9;
R           = R_site:dR:15;      % Alt [km]
eps         = 0.01;              % Error
Gr_alt      = 0;                 % Overlap Altitude [km]
figN        = 1;                 % Figure Count
n           = 6;                 % Polynomial degree
indm = round((Rmin - R_site)/dR + 1);
indx = round((Rmax - R_site)/dR + 1);
Pow_vec = {raw_mat1 raw_mat2 raw_mat3 raw_mat4};

clear raw_mat1  raw_mat2 raw_mat3 raw_mat4
labels = {'Parallel - Analog';'Parallel - Digital';...
    'Perpendicular - Analog';'Perpendicular - Digital'};

for f_ind = 1:1
    raw_mat = Pow_vec{1,f_ind};
    %Calculating average power profile
    pow = 0;
    for i=1:n_pow
        pow = pow + raw_mat(1:indx,i);
    end
    pow = pow'/n_pow;                 % Average power profile
    plog = log(pow.*R(1:indx).^2);    % Average log power profile
    %plog = log(R(1:indx).^2);
   % plog = log(R(1:indx).^2)
    figure(figN);
    plot(pow,R(1:indx),'.');
    hold on; grid on;
    ylabel('Altitude [km] ');
    xlabel('Power');
    title(['Average Power Profile(N = 141)' labels(f_ind,1)]);
    hold off;
    figN = figN + 1;
%     % Average log power profile
%     figure(figN);
%     plot(plog,R(1:indx),'.g');
%     hold on; grid on;
%     ylabel('Altitude [km] ');
%     xlabel('log(P*R^2)');
%     title(['Average Log Power Profile(N = 141) log(P*R^2)' labels(f_ind,1)]);
%     hold off;
%     figN = figN + 1;

Overlap_01

Polynomial fit to the power profile

    A = polyfit(R(indm:indx),pow(indm:indx),n);
    Pint = 0;
    for i =1:n+1
         Pint  = Pint + A(i)*R(1:indx).^(n+1-i);
    end
    figure(figN);hold on; grid on;
    plot(pow(indm:indx),R(indm:indx),'*b');
    plot(Pint,R(1:indx),'.r');
    ylabel('Altitude [km] ');
    xlabel('Power');
    title(['Polynomial fit to average power profile' labels(f_ind,1)]);
    hold off;
    legend('Actual', 'Fit')
    figN = figN + 1;

Overlap_02

Geometric factor derived from average power profile

    S   =  log(R(1:indx).^2.*pow);
    Sint = log(R(1:indx).^2.*Pint);
    GR_int = exp(S - Sint);         %Geometric factor,Overlap factor

    figure(figN);hold on; grid on;
    plot(R(1:indx),GR_int,'.r');
    xlabel('Altitude [km] ');
    ylabel('Geometric factor G(R)');
    title(['Geometric factor derived from average power profile'...
       labels(f_ind,1)]);
    grid on;
    hold off;
    figN = figN + 1;

Overlap_03

Calculating geometric form factor for each power profile

     for j = 1:n_pow
        pow = raw_mat(1:indx,j);
        pow = pow';
        A = polyfit(R(indm:indx),pow(indm:indx),n);
        Pint = 0;
        for i = 1:n+1
            Pint  = Pint + A(i)*R(1:indx).^(n+1-i);
        end
        S   =  log(R(1:indx).^2.*pow);
        Sint = log(R(1:indx).^2.*Pint);
        GR_int = exp(S - Sint);     %Geometric factor
        for k = 1:indx
            if (abs(GR_int(k) - 1.0) < eps )
                Gr_alt(j) = R(k);
                break;
            end
        end
     end
    figure(figN);
    hist(Gr_alt,20);
    xlabel('Altitude [km]');
    ylabel('Number of Power profiles');
    title(['G(R) altitude variation for various power profiles',...
        labels(f_ind,1)]);
    figN = figN + 1;
%     %% Mean altitude overlapping occurs, Sea Level
%     mean_Gr_alt = mean(Gr_alt);
%     std_Gr_alt =  std(Gr_alt);
%     display(labels(f_ind,1));
%     fprintf('Overlap Alt = %4.2f +- %4.2f [km] \n\n',mean_Gr_alt,std_Gr_alt);
end

Overlap_04

Mesosphere-Stratosphere-Troposphere(MST) Radar Data Analysis

In this example we  analyse data  from MST (mesosphere-stratosphere-troposphere) radar observations. MST radars used to do observation of the dynamics of the lower and middle atmosphere to study winds, waves, turbulence and instabilities generate irregularities in the atmosphere. The reflected radar signals from the random irregularities are collected by the receiver antenna. The return signal strength is highly depending on the refractive index which is a function of atmospheric parameters such as humidity, temperature, and pressure and electron density. Hence those parameters will highly affect the signal to noise ratio (SNR). Input data file structure {UT, Altitude,Signal amplitude (linear),Signal-to-noise ratio (SNR), dB, Zonal wind, m/s, Meridional wind, m/s}

clear all; clc; close all;
% Data files name ID
fl = {'150 m height resolutions';
      '1200 m height resolutions';
      'Barker Coding';
      'Complementary Coding';
      'Uncoded Data';
    };
% Files for three different observation days
fid  = { 'TXT_20061211_test1.fca','TXT_20071010_test1.fca',...
                    'TXT_20081014_test1.fca';   % 150 m height resolutions
        'TXT_20061211_test2.fca','TXT_20071010_test2.fca',...
                    'TXT_20081014_test2.fca';   % 1200 m height resolutions
       'TXT_20061211_test3.fca','TXT_20071010_test3.fca',...
                    'TXT_20081014_test3.fca';   % Barker coding
        'TXT_20061211_test4.fca','TXT_20071010_test4.fca',...
                    'TXT_20081014_test4.fca';   % Complementary coding
        'TXT_20061211_test5.fca','TXT_20071010_test5.fca',...
                    'TXT_20081014_test5.fca';   % Uncoded data
};
dates = ['2006 Dec 11'; '2007 Oct 10'; '2008 Dec 14' ];

SNR value as a function of universal time and altitude for three different observation days

fs = size(fid,1);
fd = size(fid,2);
for jd = 1:fd
    for id = 1:fs
        clear SNR;
        fname = fid{id,jd};
        data    = load(fname);
        time    = unique(data(:,1));
        alt     = unique(data(:,2));
        size_t  = size(time,1);
        size_a  = size(alt,1);
        % Signal-to-noise ratio (SNR), dB
        for i = 1:size_a
            for j = 1:size_t
                    SNR(i,j)= data(i+((j-1)*size_a),4);
            end
        end
        % Plot
        if(id > 2 )
            FigHandle = figure(2);
            hold on;
            ii = id - 2;
            subplot(3,3,ii+(jd-1)*3);
            colormap(jet);
            pcolor(time,alt,SNR);
            shading flat;
            caxis([-25,30]);
            if(id == 5)
             colorbar;
            end
            if(id == 3)
                ylabel('Altitude [km]');
            end
            if((id == 4))
                xlabel(['UT/Date: ',dates(jd,:) ]);
            end
                if((jd == 1)&&(id == 4) )
                    title(['Signal-to-Noise Ratio(SNR) [dB]', fl(id)]);
                else
                       if(jd == 1)
                           title(fl(id));
                       end
                end
            set(FigHandle, 'Position', [100, 0, 800, 800]);
           else
                FigHandle = figure(1);
                hold on;
                subplot(3,2,id+(jd-1)*2);
                colormap(jet);
                pcolor(time,alt,SNR);
                shading flat;
                caxis([-25,30]);
                if(id == 2)
                    colorbar;
                end
                if(id == 1)
                    ylabel('Altitude [km]');
                end
                xlabel(['UT/Date: ',dates(jd,:) ]);
                if((jd == 1))
                    title(['Signal-to-Noise Ratio(SNR) [dB]', fl(id)]);
                end
            set(FigHandle, 'Position', [100, 0, 600, 800]);
        end
    end
endSR_mod2_01 SR_mod2_02

Magnitude and direction of horizontal winds

The figures below provide the horizontal wind variation over the altitude and universal time for three different days. The direction of the wind is mostly from west to east. The results are expected as the wind in this layer of atmosphere moves west to east because of the Coriolis acceleration due to force caused by the rotation of the earth.

clear all; clc; close all;
dates = ['2006 Dec 11'; '2007 Oct 10'; '2008 Dec 14' ];
% Data files name ID
fid = {'TXT_20061211_test4.fca','TXT_20071010_test4.fca',...
                    'TXT_20081014_test4.fca' };     % Complementary coding
% Radar with Complementary coding
for id = 1:3
data   = load(fid{id});
time   = unique(data(:,1));
alt    = unique(data(:,2));
size_t = size(time,1);
size_a = size(alt,1);
% Signal-to-noise ratio (SNR), dB
for i = 1:size_a
    for j = 1:size_t
            zWind(i,j)= data(i+((j-1)*size_a),5); % Zonal Wind, East
            mWind(i,j)= data(i+((j-1)*size_a),6); % Meridional Wind, North
    end
end
hWind = sqrt(zWind.^2 + zWind.^2);       % Horizontal Wind [m/s]
%dWind=  atan2(zWind,mWind)*180/pi + 180; % Wind Direction angle, Zero in North direction
a_max = 60;
a_min = 30;
FigHandle = figure(2 + id);
set(FigHandle, 'Position', [100, 0, 800, 400]);
subplot(2,2,[1 3]);
colormap(cool);
pcolor(time,alt(1:a_max),hWind(1:a_max,:));
shading flat;
colorbar;
xlabel(['UT/Date:',dates(id,:)]);
ylabel('Altitude [km]');
title('Horizontal wind speed [m/s], Complementary coded signal');
subplot(2,2,[2 4]);
hold on;
whitebg([0.0 .0 .2]);
quiver(time,alt(1:a_max),zWind(1:a_max,:),mWind(1:a_max,:),'r');
%contour(time,alt(1:a_max),hWind(1:a_max,:));
xlabel(['UT/Date:',dates(id,:)]);
title('Horizontal wind direction(top - North,right - East)');
axis([min(time),max(time),min(alt(1:a_max)),max(alt(1:a_max))]);
hold off;
end

 

%d bloggers like this: