Home » Posts tagged 'solar wind.'
Tag Archives: solar wind.
Kinetic Theory of the Solar Wind Plasma
Contents
- Solar wind protons number density,Zero moment
- Solar wind protons fluxes in all directions,First moment
- Solar wind bulk flow velocity
- Distribution function plot
- Distribution function in the vx – vy plane
- Distribution function in the vx – vz plane
- Pressure tensor and scalar pressure
- Scalar pressure
- Solar wind thermal velocity and the solar wind kinetic temperature
- Thermal Velocity
In this problem we are given an input file which contains the solar wind protons velocity space distributions obtained from a particle simulation code for an observer located at 1.0 AU distance from the Sun. Simulated observer collects only the solar wind protons with directional velocity range from 0 to 8 *10^5 m/s and velocity resolution of 5*10^3 m/s in all three directions. The magnetic field is constant +5 nT in a with a magnetic vector along Y axis, and the solar wind flows along X axis.
clc;clear all;close all;
Constants
mp = 1.6726E-27; % Mass of a proton [kg] kb = 1.3806503e-23; % Boltzmann constant [J/kg]
Load the file with wind protons velocity space distributions into MATLAB The velocity space distribution values are stored in ‘f’
load data dv = 5e3; %Velocity resolution in all directions [m/s] % Velocity space [m/s] v_x = -8E5:dv:8E5; v_y = -8E5:dv:8E5; v_z = -8E5:dv:8E5;
Solar wind protons number density,Zero moment
ns = sum(f(:))*(dv^3);
fprintf('Solar wind protons number density %4.2d m^-3 \n\n',ns);
Solar wind protons number density 3.00e+006 m^-3
Solar wind protons fluxes in all directions,First moment
Fi_x = 0; Fi_y = 0; Fi_z = 0; len = length(v_x); for i = 1:len for j = 1:len for k = 1:len Fi_x = Fi_x + v_x(i)*f(i,j,k); Fi_y = Fi_y + v_y(j)*f(i,j,k); Fi_z = Fi_z + v_z(k)*f(i,j,k); end end end Fi_x = Fi_x*dv^3; Fi_y = Fi_y*dv^3; Fi_z = Fi_z*dv^3; fprintf('Solar wind protons flux in X direction %4.2d m-2/s\n',Fi_x); fprintf('Solar wind protons flux in Y direction %4.2d m-2/s\n',Fi_y); fprintf('Solar wind protons flux in Z direction %4.2d m-2/s\n\n',Fi_z); Fi = [Fi_x,Fi_y,Fi_z];
Solar wind protons flux in X direction -1.09e+012 m-2/s Solar wind protons flux in Y direction 7.58e-007 m-2/s Solar wind protons flux in Z direction -6.91e+004 m-2/s
Solar wind bulk flow velocity
Urt = Fi/ns/1000; %[km/s] fprintf('Solar wind bulk flow velocity U [%4.2f %4.2f %4.2f] km/s\n',Urt);
Solar wind bulk flow velocity U [-365.00 0.00 -0.00] km/s
Distribution function plot
Plot the distribution function in the vx – vy plane and compare it with distribution function in the vx – vz plane. The center of the distribution contours should clearly show the bulk velocity in each plane.
v_x = v_x/1000; v_y = v_y/1000; v_z = v_z/1000; % Maximum of velocity space distribution function [f_max,ind] = max(f(:)); size_f = [321 321 321]; % Location of maximum [f_mi,f_mj,f_mk] = ind2sub(size_f,ind);
Distribution function in the vx – vy plane
figure(1); hold on;grid on; contour(v_x, v_y, f(:,:,f_mk) ); scatter(Urt(2),Urt(1),'*r'); % Matlab will auto adjust the axis and ellipse will appear as circle % We adjust the axis manually to see the contour shape axis([-120,120,-480,-240]); title('Distribution function in the vx - vy plane'); ylabel('v_x [km/s]'); xlabel('v_y [km/s]'); hold off;
Distribution function in the vx – vz plane
figure(2); hold on;grid on; contour(v_x, v_z, squeeze(f(:,f_mj,:)) ); axis([-120,120,-480,-240]); scatter(Urt(3),Urt(1),'*r'); title('Distribution function in the vx - vz plane'); ylabel('v_x [km/s]'); xlabel('v_z [km/s]'); hold off;
The type of the distribution function is Bi-Maxwellian, because the shape in vx – vy is ellipse.
Pressure tensor and scalar pressure
C = V – U and called random velocity
Ux = Urt(1);Uy = Urt(2);Uz = Urt(3); % To save calculation time we use scalar variables instead of matrix P11 = 0;P22 = 0; P33 = 0; P12 =0; P23 = 0; P13 = 0; for i = 1:len for j = 1:len for k = 1:len c1 = v_x(i) - Ux; c2 = v_y(j) - Uy; c3 = v_z(k) - Uz; P11 = P11 + c1^2*f(i,j,k); P22 = P22 + c2^2*f(i,j,k); P33 = P33 + c3^2*f(i,j,k); P12 = P12 + c1*c2*f(i,j,k); P23 = P23 + c2*c3*f(i,j,k); P13 = P13 + c1*c3*f(i,j,k); end end end P = [P11,P12,P13; P12,P22,P23; P13,P23,P33]; P = P*mp*dv^3*1e6 % [kg*m^3*m^2/s^2]
P = 1.0e-011 * 0.3106 -0.0000 0.0000 -0.0000 0.9319 0.0000 0.0000 0.0000 0.3106
Scalar pressure
The scalar pressure ps is defined as one third of the trace of Pij
ps = 1/3*(P(1,1) + P(2,2) + P(3,3));
fprintf('Scalar pressure %4.2d nPa\n',ps*1e9)
Scalar pressure 5.18e-003 nPa
Solar wind thermal velocity and the solar wind kinetic temperature
Kinetic temperature of species can be given in a form of a 3 × 3 matrix
Ts = P/(ns*kb) % K
Ts = 1.0e+005 * 0.7500 -0.0000 0.0000 -0.0000 2.2500 0.0000 0.0000 0.0000 0.7500
Thermal Velocity
Vth = ([Ts(1,1),Ts(2,2),Ts(3,3)].*(2*kb/mp)).^0.5;
fprintf('Thermal Velocity Vth [ %4.2f %4.2f %4.2f ] km/s\n',Vth/1000)
V_sp = norm(Vth) ;
Thermal Velocity Vth [ 35.19 60.95 35.19 ] km/s
Debye length, plasma frequency and cyclotron frequency
The calculation of characteristic Debye length, plasma frequency and cyclotron frequency of electrons in the ionosphere, the plasmasphere, the outer magnetosphere and the solar wind.
clc;clear all; me = 9.109E-31; %[kg] Electron rest mass mp = 1.673E-27; %[kg] Proton rest mass eps0 = 8.8542E-12; %[A*s/(V*m)] Permittivity e = 1.602E-19; %[C] Elementary charge Re = 6.37E6; %[m] Earth’s radius Md = 8E15; %[T*m3] Earth’s magnetic dipole moment
Ionosphere
n = 1E12; %[m-3] Electron density kTe = 0.1; %[eV] Thermal energy r = Re + 3E5; %[km] Radial distance from the Earth’s center wp = (e^2*n/(eps0*me))^0.5/(2*pi); %[Hz] Plasma frequency lD = (eps0*kTe/(n*e))^0.5; %[m] Debye length B = 2*Md/r^3; %[T] Earth’s magnetic field Fc = e*B/(2*pi*me); %[Hz] Cyclotron frequency fprintf('Debye length %4.2d [m]\n',lD); fprintf('Plasma frequency %4.2d [Hz]\n',wp); fprintf('Cyclotron frequency %4.2d [Hz]\n\n',Fc);
Debye length 2.35e-003 [m] Plasma frequency 8.98e+006 [Hz] Cyclotron frequency 1.51e+006 [Hz]
Plasmasphere
n = 1E7; %[m-3] Electron density kTe = 1; %[eV] Thermal energy r = 5*Re; %[km] Radial distance from the Earth’s center wp = (e^2*n/(eps0*me))^0.5/(2*pi); %[Hz] Plasma frequency lD = (eps0*kTe/(n*e))^0.5; %[m] Debye length B = 2*Md/r^3; %[T] Earth’s magnetic field Fc = e*B/(2*pi*me); %[Hz] Cyclotron frequency fprintf('Debye length %4.2d [m]\n',lD); fprintf('Plasma frequency %4.2d [Hz]\n',wp); fprintf('Cyclotron frequency %4.2d [Hz]\n\n',Fc);
Debye length 2.35e+000 [m] Plasma frequency 2.84e+004 [Hz] Cyclotron frequency 1.39e+004 [Hz]
Outer magnetosphere
n = 1E6; %[m-3] Electron density kTe = 50; %[eV] Thermal energy r = 7*Re; %[km] Radial distance from the Earth’s center wp = (e^2*n/(eps0*me))^0.5/(2*pi); %[Hz] Plasma frequency lD = (eps0*kTe/(n*e))^0.5; %[m] Debye length B = 2*Md/r^3; %[T] Earth’s magnetic field Fc = e*B/(2*pi*me); %[Hz] Cyclotron frequency fprintf('Debye length %4.2d [m]\n',lD); fprintf('Plasma frequency %4.2d [Hz]\n',wp); fprintf('Cyclotron frequency %4.2d [Hz]\n\n',Fc);
Debye length 5.26e+001 [m] Plasma frequency 8.98e+003 [Hz] Cyclotron frequency 5.05e+003 [Hz]
Solar wind
n = 1E6; %[m-3] Electron density kTe = 5; %[eV] Thermal energy wp = (e^2*n/(eps0*me))^0.5/(2*pi); %[Hz] Plasma frequency lD = (eps0*kTe/(n*e))^0.5; %[m] Debye length B = 1E-8; %[T] Earth’s magnetic field Fc = e*B/(2*pi*me); %[Hz] Cyclotron frequency fprintf('Debye length %4.2d [m]\n',lD); fprintf('Plasma frequency %4.2d [Hz]\n',wp); fprintf('Cyclotron frequency %4.2d [Hz]\n\n',Fc);
Debye length 1.66e+001 [m] Plasma frequency 8.98e+003 [Hz] Cyclotron frequency 2.80e+002 [Hz]