Home » Posts tagged 'Julian Day Calculator'
Tag Archives: Julian Day Calculator
Local Sidereal Time
This code is a MATLAB script that can be used to calculate Greenwich Sidereal Time, Local Sidereal Time, Julian Day
clc;
clear all;
Input:
Date, April 11,2013, UT time 20:11:30, Longitude [deg]
Output:
Julian day(JD), Greenwich sidereal time(GST), Local sidereal time(LST)
year = 2013; month = 4; day = 11; hour = 20; min = 11; sec = 30; long = -73.99;
Julian day
UT = hour + min/60 + sec/3600; J0 = 367*year - floor(7/4*(year + floor((month+9)/12))) ... + floor(275*month/9) + day + 1721013.5; JD = J0 + UT/24; % Julian Day fprintf('Julian day = %6.4f [days] \n',JD);
Julian day = 2456394.3413 [days]
JC is Julian centuries between the Julian day J0 and J2000(2,451,545.0) Greenwich sidereal time at 0 hr UT can be calculated by this equation [Seidelmann,1992]
JC = (J0 - 2451545.0)/36525; GST0 = 100.4606184 + 36000.77004*JC + 0.000387933*JC^2 - 2.583e-8*JC^3; %[deg] GST0 = mod(GST0, 360); % GST0 range [0..360] fprintf('Greenwich sidereal time at 0 hr UT %6.4f [deg]\n',GST0);
Greenwich sidereal time at 0 hr UT 199.3719 [deg]
Greenwich sidereal time at any other UT time
GST = GST0 + 360.98564724*UT/24; GST = mod(GST, 360); % GST0 range [0..360] fprintf('Greenwich sidereal time at UT[hours] %6.4f [deg]\n',GST);
Greenwich sidereal time at UT[hours] 143.0761 [deg]
Local sidereal time (LST)
LST = GST + long; LST = mod(LST, 360); % LST range [0..360] fprintf('Local sidereal time,LST %6.4f [deg]\n',LST);
Local sidereal time,LST 69.0861 [deg]
Julian Day
Julian Day is defined as the number of days since noon UT on January 1, 4713 BC.
clc; clear all; % Input Date: April 11,2013. UT time 20:11:30 year = 2013; month = 4; day = 11; hour = 20; min = 11; sec = 30;
UT = hour + min/60 + sec/3600; J0 = 367*year - floor(7/4*(year + floor((month+9)/12))) ... + floor(275*month/9) + day + 1721013.5; JD = J0 + UT/24; fprintf('Julian Day = %6.4f [days] \n',JD)
Julian Day = 2456394.3413 [days]