Home » Posts tagged 'angular velocity'
Tag Archives: angular velocity
Inertial components of the angular acceleration
Example 10.4, Orbital Mechanics for Engineering Students, 2nd Edition.
The inertial components of the angular momentum of a torque-free rigid body are
Hg = [320; -375; 450 ]; %[kg*m^2/s] IJK % the Euler angles [deg] are fi = 20; theta = 50; psi = 75; % The inertia tensor in the body-fixed principal frame is Ig = [1000, 0, 0; 0, 2000, 0; 0, 0, 3000]; %[kg*m^2]
Obtain the inertial components of the (absolute) angular acceleration Matrix of the transformation from body-fixed frame to inertial frame
QxX = [-sind(fi)*cosd(theta)*sind(psi) + cosd(fi)*cosd(psi), ... -sind(fi)*cosd(theta)*cosd(psi) - cosd(fi)*sind(psi),sind(fi)*sind(theta); cosd(fi)*cosd(theta)*sind(psi) + sind(fi)*cosd(psi),... cosd(fi)*cosd(theta)*cosd(psi) - sind(fi)*sind(psi),-cosd(fi)*sind(theta); sind(theta)*sind(psi), sind(theta)*cosd(psi), cosd(theta) ]
QxX = 0.0309 -0.9646 0.2620 0.6720 -0.1740 -0.7198 0.7399 0.1983 0.6428
Matrix of the transformation from inertial frame to body-fixed frame
QXx = QxX'
QXx = 0.0309 0.6720 0.7399 -0.9646 -0.1740 0.1983 0.2620 -0.7198 0.6428
Obtain the components of HG in the body frame
Hgx = QXx*Hg % [kg*m^2/s]
Hgx = 90.8616 -154.1810 643.0376
The components of angular velocity in the body frame
Ig_inv = inv(Ig); wx = Ig_inv*Hgx % [rad/s]
wx = 0.0909 -0.0771 0.2143
From Euler ’s equations of motion we calculate angular acceleration in the body frame.
alfa_x = - Ig_inv*cross(wx,Ig*wx) % [rad/s^2]
alfa_x = 0.0165 0.0195 0.0023
Angular acceleration in the inertial frame
alfa_X = QxX*alfa_x % [rad/s^2] IJK
alfa_X = -0.0177 0.0060 0.0176
Published with MATLAB® 7.10