Home » Math
Category Archives: Math
Basic MATLAB
Using the break command to stop the while loop for given condition
t = 1; while 1 % infinite loop t = t+1; if (t > 1000 ) % condition break % break the loop end end
Swirl,Matlab Code
clc; clear all; close all; x = -20:0.1:20; sz = size(x); ind = 0; b = 6 for n = 1:15 % for i = 1:sz(2) for j = 1:sz(2) sw(i,j) = sin(b*cos(sqrt(x(i)^2+x(j)^2))-n*atan2(x(i),x(j))); end end ind = ind +1; fig = figure('Position',[0 0 800 800]); hold on; imagesc(sw); colormap bone; axis off; set(fig, 'color', [0 0 0]); set(gcf, 'InvertHardCopy', 'off'); hold off; %print(fig,['Sw',num2str(ind)],'-djpeg ','-r300'); close all; end
Voronoi diagram of Prime Spiral
Contents
Ulam’s Prime Spiral
To generate a Ulam’s prime spiral the positive integers are arranged in a spiral pathern and prime numbers are highlighted in some way along the spiral. For example we used blue pixels to represent primes and white pixels for composite numbers. The code below uses built in Matlab function to generate the Ulam spiral.
close all; clc clear all sz = 101; % Size of the NxN square matrix mat = spiral(sz); k =1; for i =1:sz for j=1:sz if isprime(mat(i,j)) % Check if the number is prime % saving indices of primes y(k) = i; x(k) = j; k = k+1; end end end figure('Position',[0 0 800 800]); hold on; colormap bone; scatter(x,y,'.b'); axis([1 sz 1 sz ]); axis off; set(gca,'YDir','Reverse');
Now lets construct Varanoi diagram for the prime numbers (higlighted points in blue) in Ulam spiral.
figure('Position',[0 0 800 800]); hold on; xy = [x',y']; [v,c] = voronoin(xy); for i = 1:length(c) patch(v(c{i},1),v(c{i},2),'w'); end axis([1 sz 1 sz ]); axis off; set(gca,'YDir','Reverse'); scatter(x,y,'.b');
Cells in Voronoi diagram of the Ulam Prime Spiral
% We observe various poligons with n-sides such as triangles, quadrangles, pentagons, etc... % Lets call % A3 = a sequence of prime numbers which has a Triangular Voronoi cell in Voronoi diagram of the Ulam Prime Spiral % A4 = a sequence of prime numbers which has a Quadrilateral Voronoi cell in Voronoi diagram of the Ulam Prime Spiral % A5 = a sequence of prime numbers which has a Pentagonal Voronoi cell in Voronoi diagram of the Ulam Prime Spiral % A6 = 6 sides % A7 = 7 sides % An = n sides % Q1: What is the maximum value for n, n_max ? In other words is there an uper bound ? % Q2: If yes, What are the primes whic has a n_max side poligon cells in Voronoi diagram of the Ulam Prime Spiral % The code below is used to calculate An k3 = 1; k4 = 1; k5 = 1; k6 = 1; k7 = 1; k8 = 1; for i = 1:length(c) szv = size(v(c{i},1)); polyN(i) = szv(1); switch polyN(i) case 3 A3(k3) = mat(y(i),x(i)); k3 = k3+1; A3xy(k3,:)= [x(i),y(i)]; case 4 A4(k4) = mat(y(i),x(i)); k4 = k4+1; A4xy(k4,:)= [x(i),y(i)]; case 5 A5(k5) = mat(y(i),x(i)); k5 = k5+1; A5xy(k5,:)= [x(i),y(i)]; case 6 A6(k6) = mat(y(i),x(i)); k6 = k6+1; A6xy(k6,:)= [x(i),y(i)]; case 7 A7(k7) = mat(y(i),x(i)); k7 = k7+1; A7xy(k7,:)= [x(i),y(i)]; case 8 A8(k8) = mat(y(i),x(i)); k8 = k8+1; A8xy(k8,:)= [x(i),y(i)]; end end % % First 15 terms A3 = sort(A3); fprintf('A3 = '); fprintf('%i, ',A3(1:15)); fprintf('\n'); A4 = sort(A4); fprintf('A4 = '); fprintf('%i, ',A4(1:15)); fprintf('\n'); A5 = sort(A5); fprintf('A5 = '); fprintf('%i, ',A5(1:15)); fprintf('\n'); A6 = sort(A6); fprintf('A6 = '); fprintf('%i, ',A6(1:15)); fprintf('\n'); A7 = sort(A7); fprintf('A7 = '); fprintf('%i, ',A7(1:15)); fprintf('\n'); A8 = sort(A8); fprintf('A8 = '); fprintf('%i, ',A8(1:15)); fprintf('\n');
A3 = 313, 389, 1283, 1399, 1669, 1787, 2087, 2143, 2713, 2801, 3469, 4091, 4787, 4789, 4903, A4 = 23, 31, 47, 59, 71, 73, 79, 131, 139, 167, 173, 181, 229, 239, 251, A5 = 2, 3, 11, 13, 17, 19, 29, 37, 53, 83, 97, 101, 103, 107, 109, A6 = 5, 7, 41, 43, 89, 127, 179, 193, 233, 263, 283, 317, 379, 383, 397, A7 = 61, 157, 199, 311, 349, 409, 463, 509, 557, 601, 641, 691, 727, 757, 823, A8 = 67, 491, 613, 1013, 1117, 1201, 1249, 1301, 1373, 1543, 1753, 1907, 2017, 2339, 2411,
% Plotting % The color code used % n = 3, Triangle yellow % n = 4, Tetragon green % n = 5, Pentagon magenta % n = 6, cyan % n = 7, red % n = 8, yellow figure('Position',[0 0 800 800]); hold on; xy = [x',y']; [v,c] = voronoin(xy); for i = 1:length(c) patch(v(c{i},1),v(c{i},2),'w'); end axis([1 sz 1 sz ]); axis off; set(gca,'YDir','Reverse'); scatter(A3xy(:,1),A3xy(:,2),'.k'); scatter(A4xy(:,1),A4xy(:,2),'.g'); scatter(A5xy(:,1),A5xy(:,2),'.m'); scatter(A6xy(:,1),A6xy(:,2),'.c'); scatter(A7xy(:,1),A7xy(:,2),'.r'); scatter(A8xy(:,1),A8xy(:,2),'.y'); % Note that the last terms can be wrong. They corespond to the points on the outer % edges of the spiral which might be altered when considering a larger spiral.
Triangular Cells with Integer Area
k3 = 1; k3i = 1; fprintf('Prime, Cell Area, Perimeter \n'); for i = 1:length(c) szv = size(v(c{i},1)); polyN(i) = szv(1); if(polyN(i) == 3) % Sides of a triangle A = v(c{i}(1, 1),:) - v(c{i}(1, 2),:); B = v(c{i}(1, 1),:) - v(c{i}(1, 3),:); C = v(c{i}(1, 2),:) - v(c{i}(1, 3),:); % Perimeter of a triangle pv = norm(A)+ norm(B)+ norm(C); P3(k3) = pv; % Area of a triangle AB = cross([A,0], [B,0], 2); S3(k3) = 1/2 * sum(sqrt(sum(AB.^2, 2))); A3(k3) = mat(y(i),x(i)); fprintf('%i %4.4f %4.4f \n',A3(k3), S3(k3),P3(k3)) % Primes with triangle Voronoi cells with integer area if S3(k3)== round(S3(k3)) % check if area is integer A3i(k3i) = mat(y(i),x(i)); k3i = k3i +1; end k3 = k3+1; end end % Primes with triangular Voronoi cells with integer area fprintf('\n A3i = '); A3i = sort(A3i); fprintf('%i, ',A3i);
Prime, Cell Area, Perimeter 8999 9.0000 14.4853 9001 9.0000 14.4853 8627 4.5000 10.2426 10093 NaN Inf 6869 8.0000 13.6569 9419 6.0000 11.4049 5867 6.0000 11.4049 3469 6.0000 11.4049 2801 6.0000 11.4049 1669 4.5000 10.2426 9439 4.5000 10.2426 4787 6.0000 11.4049 4789 6.0000 11.4049 2143 4.5000 10.2426 1787 4.5000 10.2426 4933 6.0000 11.4049 313 6.0000 11.4049 389 6.0000 11.4049 1399 6.0000 11.4049 2713 4.5000 10.2426 1283 6.0000 11.4049 2087 4.0000 9.6569 4091 6.0000 11.4049 4903 6.2500 12.0711 8111 6.0000 11.4049 6037 6.2500 12.0711 10007 NaN Inf 9929 NaN Inf A3i = 313, 389, 1283, 1399, 2087, 2801, 3469, 4091, 4787, 4789, 4933, 5867, 6869, 8111, 8999, 9001, 9419,
Ulam spiral,Prime factors spiral
Ulam spiral,prime spiral
clc; clear all; close all; sz = 201; mat = spiral(sz); pm = ~isprime(mat); figure('Position',[0 0 800 800]); imagesc(pm); colormap bone; caxis([0, 1]);axis off;
Prime factor colormap
Black dots are prime numbers. As lighter is the dot as higher is the number of prime factors of that number in the Ulam spiral.
sz = 201; mat = spiral(sz); matf = zeros(sz); for i = 1:sz for j = 1:sz fac = factor(mat(i,j)); fm = size(fac); matf(i,j) = fm(2); end end figure('Position',[0 0 800 800]); imagesc(matf); colormap hot; caxis([1, max(matf(:))]);axis off;
Ulam spiral of prime number of prime factors
Black dots corespondend to the numbers in Ulam spiral which has a prime number of prime factors.
sz = 201; mat = spiral(sz); matf = zeros(sz); for i = 1:sz for j = 1:sz fac = factor(mat(i,j)); fm = size(fac); matf(i,j) = fm(2); end end figure('Position',[0 0 800 800]); pm = ~isprime(matf); %sum(pm(:)); imagesc(pm); colormap bone; caxis([0, 1]);axis off;
Henneberg surface, Matlab code
close all; clc;clear all;
[u v] = meshgrid(0:0.1:1); %v = meshgrid(1:0.01:2); i = 1; for u =-pi/2: 0.1:pi/2 j =1; for v = -pi/2:0.1:pi/2 x(i,j) = 2*sinh(u)*cos(v) - 2/3*sinh(3*u)*cos(3*v); y(i,j) = 2*sinh(u)*sin(v) - 2/3*sinh(3*u)*sin(3*v); z(i,j) = 2*cosh(2*u)* cos(2*v); j = j+1; end i = i+1; end surf(y,x,z); axis off;