Transfer from a LEO 350 km circular orbit with 53.4 deg inclination to a Geostationary Equatorial Orbit(GEO)
clear all; clc; close all;
Input
R_LEO = 6378 + 350; % km R_GEO = 42164; % km mu = 398600; % km^3/s^2 incl = 53.4; % deg
Method 1: Hohman transfer from LEO to GEO and after inclination change
Rp = R_LEO; Ra = R_GEO; e = (Ra - Rp)/(Ra + Rp); % transfer orbit eccentricity a = (Ra + Rp)/2; % transfer orbit semimajor axis V_LEO = (mu/R_LEO)^0.5; Vp = (2*mu/R_LEO - mu/a)^0.5; Va = (2*mu/R_GEO - mu/a)^0.5; V_GEO = (mu/R_GEO)^0.5; dV_LEO = abs(Vp - V_LEO); dV_GEO = abs(V_GEO - Va); dV_Hoff = dV_GEO + dV_LEO; % Inclination change at GEO dV_incl = 2*V_GEO*sind(incl/2); dV_total1 = dV_incl + dV_Hoff; fprintf('Method 1: Hohman transfer from LEO to GEO and after inclination change\n'); fprintf('dV_Hoff = %6.2f [km/s] \n',dV_Hoff); fprintf('dV_incl = %6.2f [km/s] \n',dV_incl); fprintf('dV_total = %6.2f [km/s] \n',dV_total1);
Method 1: Hohman transfer from LEO to GEO and after inclination change dV_Hoff = 3.87 [km/s] dV_incl = 2.76 [km/s] dV_total = 6.64 [km/s]
Method 2: Inclination change in LEO and after Hohman transfer to GEO
dV_incl = 2*V_LEO*sind(incl/2); dV_total2 = dV_incl + dV_Hoff; fprintf('\nMethod 2: Inclination change in LEO and after Hohman transfer to GEO\n'); fprintf('dV_incl = %6.2f [km/s] \n',dV_incl); fprintf('dV_Hoff = %6.2f [km/s] \n',dV_Hoff); fprintf('dV_total = %6.2f [km/s] \n\n',dV_total2); fprintf('Method 2/Method 1 = %6.2f \n',dV_total2/dV_total1);
Method 2: Inclination change in LEO and after Hohman transfer to GEO dV_incl = 6.92 [km/s] dV_Hoff = 3.87 [km/s] dV_total = 10.79 [km/s] Method 2/Method 1 = 1.63