Six orbital elements are: Specific angular momentum. Inclination. Right ascension (RA) of the ascending node. Eccentricity. Argument of perigee. True anomaly.
clear all; clc; % Lets consider following example % Given the state vector R = [ -6132 -3380 2472]; %[km] V = [-3.369 6.628 2.433]; %[km/s] mu = 398600; % Earth’s gravitational parameter [km^3/s^2] r = norm(R); % Radial distance v = norm(V); % Speed vr = R*V'/r; % Radial velocity H = cross(R,V); % Specific angular omentum h = norm(H); % Magnitude of the specifi c angular momentum i = acos(H(3)/h)*180/pi; % Inclination K =[0 0 1]; N =cross(K,H); % Node line vector n = norm(N); % Magnitude of N % Right ascension of the ascending node if(N(2) >= 0) RAAN = acos(N(1)/n)*180/pi; else RAAN = 360 - acos(N(1)/n)*180/pi; end ev = 1/mu*((v^2-mu/r)*R-r*vr*V); % Eccentricity vector e = norm(ev); % Eccentricity % Argument of perigee, if(ev(3) >= 0) omega = acos(N*ev'/(n*e))*180/pi; else omega = 360 - acos(N*ev'/(n*e))*180/pi; end % True anomaly if(vr >= 0) theta = acos(ev*R'/(r*e))*180/pi; else theta = 360 - acos(ev*R'/(r*e))*180/pi; end OE = [h i RAAN e omega theta]; fprintf('h [km^2/s] i [deg] RAAN [deg] e omega[deg] theta [deg] \n'); fprintf('%4.2f %4.2f %4.2f %4.4f %4.2f %4.2f \n',OE);
h [km^2/s] i [deg] RAAN [deg] e omega[deg] theta [deg] 57932.08 153.91 255.01 0.1579 17.23 31.97