Home » Space Flight/Orbital Mechanics Excercise » Inertial components of the angular acceleration

Inertial components of the angular acceleration

Example 10.4, Orbital Mechanics for Engineering Students, 2nd Edition.

The inertial components of the angular momentum of a torque-free rigid body are

```Hg = [320; -375; 450 ];       %[kg*m^2/s] IJK
% the Euler angles [deg] are
fi      =  20;
theta   =  50;
psi     =  75;
% The inertia tensor in the body-fixed principal frame is
Ig = [1000, 0,    0;
0, 2000, 0;
0, 0,    3000]; %[kg*m^2]```

Obtain the inertial components of the (absolute) angular acceleration Matrix of the transformation from body-fixed frame to inertial frame

```QxX = [-sind(fi)*cosd(theta)*sind(psi) + cosd(fi)*cosd(psi), ...
-sind(fi)*cosd(theta)*cosd(psi) - cosd(fi)*sind(psi),sind(fi)*sind(theta);
cosd(fi)*cosd(theta)*sind(psi) + sind(fi)*cosd(psi),...
cosd(fi)*cosd(theta)*cosd(psi) - sind(fi)*sind(psi),-cosd(fi)*sind(theta);
sind(theta)*sind(psi),   sind(theta)*cosd(psi),    cosd(theta)
]```
```QxX =

0.0309   -0.9646    0.2620
0.6720   -0.1740   -0.7198
0.7399    0.1983    0.6428```

Matrix of the transformation from inertial frame to body-fixed frame

`QXx = QxX'`
```QXx =

0.0309    0.6720    0.7399
-0.9646   -0.1740    0.1983
0.2620   -0.7198    0.6428```

Obtain the components of HG in the body frame

`Hgx = QXx*Hg            % [kg*m^2/s]`
```Hgx =

90.8616
-154.1810
643.0376```

The components of angular velocity in the body frame

```Ig_inv = inv(Ig);
```wx =

0.0909
-0.0771
0.2143```

From Euler ’s equations of motion we calculate angular acceleration in the body frame.

`alfa_x = - Ig_inv*cross(wx,Ig*wx)               % [rad/s^2]`
```alfa_x =

0.0165
0.0195
0.0023```

Angular acceleration in the inertial frame

`alfa_X = QxX*alfa_x                             % [rad/s^2] IJK`
```alfa_X =

-0.0177
0.0060
0.0176```

Published with MATLAB® 7.10