Contents
Free-Space Path Loss vs. Cable Loss
Click for more…! Consider a space link with 100 million kilometer distance and a transmit frequency of 2 GHz (S-Band). 1. Calculate the Free-Space Path Loss [dB].
clear all; clc; close all; F = 2; %transmit frequency (S-Band)[GHz] d = 1e8; %[km] L = 92.4 + 20*log10(F) + 20*log10(d); %[dB] fprintf('Free-Space Path Loss L = %4.2f [dB] \n',L); % Assume a typical coaxial cable with a loss of 0.3[dB/m] at S-Band. % How long may this cable be for a total loss equal to the Free-Space % Path Loss from above [m]? c_l = 0.3; %[dB/m] l_cabel = L/c_l; %[m] fprintf('Equivalent Cabel Length = %4.2f [m] \n\n',l_cabel);
Free-Space Path Loss L = 258.42 [dB] Equivalent Cabel Length = 861.40 [m]
Propagation Delays
1.Calculate the two-way propagation delays[min] between Earth and spacecrafts at diferent planets (from Mercury to Saturn; consider the following average distances between Sun-Planet: 0.3871AU for Mercury, 0.723AU for Venus, 1.524AU for Mars, 5.203AU for Jupiter, 9.582AU for Saturn). Assume conjunction Sun-Planet-Earth (Mercury, Venus), or Sun-Earth-Planet
%(Mars,Jupiter, Saturn) for an easy calculation of the minimum distances %(Note that this is not the worst case in terms of maximum distances to be % considered for the actual link design). v_light = 300000;% Speed of light in vacuum [km/s] R_mercury = 0.3871; %[AU] R_venus = 0.7230; %[AU] R_earth = 1.0000; %[AU] R_mars = 1.5240; %[AU] R_jupiter = 5.2030; %[AU] R_saturn = 9.5820; %[AU] AU = 149597871; %[km] mu_sun = 132712440018; %(km^3s?2)
Earth – Mercury
p_d = 2*(R_earth - R_mercury)/v_light*AU/60; fprintf('Min Two-way Propagation Delay, Earth - Mercury = %4.2f [min]\n',p_d); figure(1); T_mercury = 2*pi*((R_mercury*AU)^3/mu_sun)^0.5/86400; % solar days T_earth = 2*pi*((R_earth*AU)^3/mu_sun)^0.5/86400; % solar days time = 0:1:10*T_mercury; fi_earth = rem(time,T_earth)/(T_earth)*360; fi_mercury = rem(time,T_mercury)/(T_mercury)*360; phase = fi_earth - fi_mercury; dist = (R_earth^2 + R_mercury^2 - 2*R_earth*R_mercury*cosd(phase)).^0.5; subplot(2,1,1); plot(time/T_earth,dist); title ('Earth - Mercury Comunication'); ylabel('Distance Earth - Mercury [AU]'); p_d = 2*dist/v_light*AU/60; subplot(2,1,2); plot(time/T_earth,p_d,'k'); ylabel('Two-way Propagation Delay [min]'); xlabel('Time [Earth Period]');
Min Two-way Propagation Delay, Earth - Mercury = 10.19 [min]
Earth – Venus
p_d = 2*(R_earth - R_venus)/v_light*AU/60; fprintf('Min Two-way Propagation Delay, Earth - Venus = %4.2f [min]\n',p_d); figure(2); T_venus = 2*pi*((R_venus*AU)^3/mu_sun)^0.5/86400; % solar days T_earth = 2*pi*((R_earth*AU)^3/mu_sun)^0.5/86400; % solar days time = 0:1:7*T_venus; fi_earth = rem(time,T_earth)/(T_earth)*360; fi_venus = rem(time,T_venus)/(T_venus)*360; phase = fi_earth - fi_venus; dist = (R_earth^2 + R_venus^2 - 2*R_earth*R_venus*cosd(phase)).^0.5; subplot(2,1,1); plot(time/T_earth,dist); title ('Earth - Venus Comunication'); ylabel('Distance Earth - Venus [AU]'); p_d = 2*dist/v_light*AU/60; subplot(2,1,2); plot(time/T_earth,p_d,'k'); ylabel('Two-way Propagation Delay [min]'); xlabel('Time [Earth Period]');
Min Two-way Propagation Delay, Earth - Venus = 4.60 [min]
Earth – Mars
p_d = 2*(R_mars - R_earth)/v_light*AU/60; fprintf('Min Two-way Propagation Delay, Earth - Mars = %4.2f [min]\n',p_d); figure(3); T_mars = 2*pi*((R_mars*AU)^3/mu_sun)^0.5/86400; % solar days T_earth = 2*pi*((R_earth*AU)^3/mu_sun)^0.5/86400; % solar days time = 0:1:6*T_mars; fi_earth = rem(time,T_earth)/(T_earth)*360; fi_mars = rem(time,T_mars)/(T_mars)*360; phase = fi_earth - fi_mars; dist = (R_earth^2 + R_mars^2 - 2*R_earth*R_mars*cosd(phase)).^0.5; subplot(2,1,1); plot(time/T_earth,dist); title ('Earth - Mars Comunication'); ylabel('Distance Earth - Mars [AU]'); p_d = 2*dist/v_light*AU/60; subplot(2,1,2); plot(time/T_earth,p_d,'k'); ylabel('Two-way Propagation Delay [min]'); xlabel('Time [Earth Period]');
Min Two-way Propagation Delay, Earth - Mars = 8.71 [min]
Earth – Jupiter
p_d = 2*(R_jupiter- R_earth)/v_light*AU/60; fprintf('Min Two-way Propagation Delay, Earth - Jupiter = %4.2f [min]\n',p_d); figure(4); T_jupiter = 2*pi*((R_mars*AU)^3/mu_sun)^0.5/86400; % solar days T_earth = 2*pi*((R_earth*AU)^3/mu_sun)^0.5/86400; % solar days time = 0:1:3*T_mars; fi_earth = rem(time,T_earth)/(T_earth)*360; fi_jupiter = rem(time,T_jupiter)/(T_jupiter)*360; phase = fi_earth - fi_jupiter; dist = (R_earth^2 + R_jupiter^2 - 2*R_earth*R_jupiter*cosd(phase)).^0.5; subplot(2,1,1); plot(time/T_earth,dist); title('Earth - Jupiter Comunication'); ylabel('Distance Earth - Jupiter [AU]'); p_d = 2*dist/v_light*AU/60; subplot(2,1,2); plot(time/T_earth,p_d,'k'); ylabel('Two-way Propagation Delay [min]'); xlabel('Time [Earth Period]');
Min Two-way Propagation Delay, Earth - Jupiter = 69.86 [min]
Earth – Saturn
p_d = 2*(R_saturn- R_earth)/v_light*AU/60; fprintf('Min Two-way Propagation Delay, Earth - Saturn = %4.2f [min]\n',p_d); figure(5); T_saturn = 2*pi*((R_saturn*AU)^3/mu_sun)^0.5/86400; % solar days T_earth = 2*pi*((R_earth*AU)^3/mu_sun)^0.5/86400; % solar days time = 0:1:3*T_mars; fi_earth = rem(time,T_earth)/(T_earth)*360; fi_saturn = rem(time,T_saturn)/(T_saturn)*360; phase = fi_earth - fi_saturn; dist = (R_earth^2 + R_saturn^2 - 2*R_earth*R_saturn*cosd(phase)).^0.5; subplot(2,1,1); plot(time/T_earth,dist); title ('Earth - Saturn Comunication'); ylabel('Distance Earth - Saturn [AU]'); p_d = 2*dist/v_light*AU/60; subplot(2,1,2); plot(time/T_earth,p_d,'k'); ylabel('Two-way Propagation Delay [min]'); xlabel('Time [Earth Period]');
Min Two-way Propagation Delay, Earth - Saturn = 142.65 [min]
%2. For the various cases calculate the Free-Space Path Loss[dB], assuming % an RF frequency of 6 GHz. F = 6; %transmit frequency [GHz] % Earth - Mercury L = 92.4 + 20*log10(F) + 20*log10((R_earth - R_mercury)*AU); %[dB] fprintf('Free-Space Path Loss, Earth - Mercury L = %4.2f [dB] \n',L); % Earth - Venus L = 92.4 + 20*log10(F) + 20*log10((R_earth - R_venus)*AU); %[dB] fprintf('Free-Space Path Loss, Earth - Venus L = %4.2f [dB] \n',L); % Earth - Mars L = 92.4 + 20*log10(F) + 20*log10((R_mars - R_earth)*AU); %[dB] fprintf('Free-Space Path Loss, Earth - Mars L = %4.2f [dB] \n',L); % Earth - Jupiter L = 92.4 + 20*log10(F) + 20*log10((R_jupiter - R_earth)*AU); %[dB] fprintf('Free-Space Path Loss, Earth - Jupiter L = %4.2f [dB] \n',L); % Earth - Saturn L = 92.4 + 20*log10(F) + 20*log10((R_saturn - R_earth)*AU); %[dB] fprintf('Free-Space Path Loss, Earth - Saturn L = %4.2f [dB] \n\n',L);
Free-Space Path Loss, Earth - Mercury L = 267.21 [dB] Free-Space Path Loss, Earth - Venus L = 260.31 [dB] Free-Space Path Loss, Earth - Mars L = 265.85 [dB] Free-Space Path Loss, Earth - Jupiter L = 283.93 [dB] Free-Space Path Loss, Earth - Saturn L = 290.13 [dB]
Satellite Design
Your satellite designer wants to reduce the satellite transmitter output power from 50 W to 25 W to save weight. How much is this reduction expressed in dB scale?
P1 = 50; % [W] P1_db = 10*log10(P1); % 17 dBW P2 = 25; % [W] P2_db = 10*log10(P2); % 14 dBW red = (P2_db - P1_db); % - 3 dBW fprintf('Reduction expressed in DB scale %4.0f\n',red); % If you want to maintain the satellite-to-ground % station data link at the same data rate, you could achieve this by % modifying the antenna on ground: By which factor do you have to increase % the diameter of a your dish antenna then? % Pt1*A1r = Pt2*A2r A2r/A1r = Pt1/Pt2 = 2 % Pt - Transmited Power ; % Ar - Effective Area of receiving antena; R_factor = sqrt(P1/P2); fprintf('Diameter increase your dish antenna %4.2f \n',R_factor);
Reduction expressed in DB scale -3 Diameter increase your dish antenna 1.41
Published with MATLAB® 7.10