Source https://smallsat.wordpress.com
Contents
Free-Space Path Loss vs. Cable Loss
Consider a space link with 100 million kilometer distance and a transmit frequency of 2 GHz (S-Band). 1. Calculate the Free-Space Path Loss [dB].
clear all; clc; F = 2; %transmit frequency (S-Band)[GHz] d = 1e8; %[km] L = 92.4 + 20*log10(F) + 20*log10(d); %[dB] fprintf('Free-Space Path Loss L = %4.2f [dB] \n',L); % Assume a typical coaxial cable with a loss of 0.3[dB/m] at S-Band. % How long may this cable be for a total loss equal to the Free-Space % Path Loss from above [m]? c_l = 0.3; %[dB/m] l_cabel = L/c_l; %[m] fprintf('Equivalent Cabel Length = %4.2f [m] \n\n',l_cabel); % 3.Discuss this comparison. What is the fundamental diference between % the two losses? % In the second case the loss is a due the resistance of cabel. % Look in the web
Free-Space Path Loss L = 258.42 [dB] Equivalent Cabel Length = 861.40 [m]
Propagation Delays
1.Calculate the two-way propagation delays[min] between Earth and spacecrafts at diferent planets (from Mercury to Saturn; consider the following average distances between Sun-Planet: 0.3871AU for Mercury, 0.723AU for Venus, 1.524AU for Mars, 5.203AU for Jupiter, 9.582AU for Saturn). Assume conjunction Sun-Planet-Earth (Mercury, Venus), or Sun-Earth-Planet
%(Mars,Jupiter, Saturn) for an easy calculation of the minimum distances %(Note that this is not the worst case in terms of maximum distances to be % considered for the actual link design). v_light = 300000;% Speed of light in vacuum [km/s] R_mercury = 0.3871; %[AU] R_venus = 0.7230; %[AU] R_earth = 1.0000; %[AU] R_mars = 1.5240; %[AU] R_jupiter = 5.2030; %[AU] R_saturn = 9.5820; %[AU] AU = 149597871; %[km] % Earth - Mercury p_d = 2*(R_earth - R_mercury)/v_light*AU/60; fprintf('Two-way Propagation Delay, Earth - Mercury = %4.2f [min]\n',p_d); % Earth - Venus p_d = 2*(R_earth - R_venus)/v_light*AU/60; fprintf('Two-way Propagation Delay, Earth - Venus = %4.2f [min]\n',p_d); % Earth - Mars p_d = 2*(R_mars - R_earth)/v_light*AU/60; fprintf('Two-way Propagation Delay, Earth - Mars = %4.2f [min]\n',p_d); % Earth - Jupiter p_d = 2*(R_jupiter - R_earth)/v_light*AU/60; fprintf('Two-way Propagation Delay, Earth - Jupiter = %4.2f [min]\n',p_d); % Earth - Saturn p_d = 2*(R_saturn - R_earth)/v_light*AU/60; fprintf('Two-way Propagation Delay, Earth - Saturn = %4.2f[min]\n\n',p_d); %2. For the various cases calculate the Free-Space Path Loss[dB], assuming % an RF frequency of 6 GHz. F = 6; %transmit frequency [GHz] % Earth - Mercury L = 92.4 + 20*log10(F) + 20*log10(R_earth - R_mercury); %[dB] fprintf('Free-Space Path Loss, Earth - Mercury L = %4.2f [dB] \n',L); % Earth - Venus L = 92.4 + 20*log10(F) + 20*log10((R_earth - R_venus)); %[dB] fprintf('Free-Space Path Loss, Earth - Venus L = %4.2f [dB] \n',L); % Earth - Mars L = 92.4 + 20*log10(F) + 20*log10((R_mars - R_earth)); %[dB] fprintf('Free-Space Path Loss, Earth - Mars L = %4.2f [dB] \n',L); % Earth - Jupiter L = 92.4 + 20*log10(F) + 20*log10((R_jupiter - R_earth)); %[dB] fprintf('Free-Space Path Loss, Earth - Jupiter L = %4.2f [dB] \n',L); % Earth - Saturn L = 92.4 + 20*log10(F) + 20*log10((R_saturn - R_earth)); %[dB] fprintf('Free-Space Path Loss, Earth - Saturn L = %4.2f [dB] \n\n',L); %3. Discuss the implications by the delay on operations and needs for % spacecraft autonomy.
Two-way Propagation Delay, Earth - Mercury = 10.19 [min] Two-way Propagation Delay, Earth - Venus = 4.60 [min] Two-way Propagation Delay, Earth - Mars = 8.71 [min] Two-way Propagation Delay, Earth - Jupiter = 69.86 [min] Two-way Propagation Delay, Earth - Saturn = 142.65[min] Free-Space Path Loss, Earth - Mercury L = 103.71 [dB] Free-Space Path Loss, Earth - Venus L = 96.81 [dB] Free-Space Path Loss, Earth - Mars L = 102.35 [dB] Free-Space Path Loss, Earth - Jupiter L = 120.43 [dB] Free-Space Path Loss, Earth - Saturn L = 126.63 [dB]
Satellite Design
% Your satellite designer wants to reduce the satellite transmitter output % power from 50 W to 25 W to save weight. How much is this reduction % expressed in dB scale? P1 = 50; % [W] P1_db = 10*log10(P1); % 17 dBW P2 = 25; % [W] P2_db = 10*log10(P2); % 14 dBW red = (P1_db - P2_db); % 3 dBW fprintf('Reduction expressed in DB scale %4.0f\n',red); % If you want to maintain the satellite-to-ground % station data link at the same data rate, you could achieve this by % modifying the antenna on ground: By which factor do you have to increase % the diameter of a your dish antenna then? R_factor = sqrt(red); fprintf('Diameter increase your dish antenna %4.2f \n',R_factor);
Reduction expressed in DB scale 3 Diameter increase your dish antenna 1.74
Published with MATLAB® 7.10